
Config.xml Guide

The config file is the heart of your ColdBox application. It contains the initialization
variables for your application and extra information used by the ColdBox plugins. Below is
an overview of every section of the file. All the data in the config.xml.cfm will be placed in the configStruct.
If you would like to reload your settings, you will need to reinitialize the framework by using the fwreinit=1 URL
action.

Note About Security: Your config.xml file is actually a cfm template. I did this in order to
protect the download of the file with the use of an Application.cfm template (Thanks to
Raymond Camden). However, for added security I also use an apache acces file: .htaccess.
You will find the .htaccess file on the distribution archive for the config directory. This is used
by Apache for executing directory security.

(Read more on .htaccess) .

In IIS, you will have to configure the directory's security from the IIS Manager.

(Good article on securing IIS)

<Settings>

 This section is for ColdBox settings. These are pre-defined and you cannot rename them or
ommit them since they are validated against its XML Schema, please remember that XML IS

CASE-SENSATIVE .

Setting Description Type

AppName: The unique name of your application String

AppCFMXMapping The Coldfusion Mapping for your application. Leave blank if the application is in the
root of your webserver.

String

DebugMode Enable/Disable ColdBox debug mode. Boolean

DebugPassword The password you would like to use to go into debugmode. You will need to pass
this string as a URL param combined with the DebugMode to use. Look at examples
below

String

DumpVarActive Enable/Disable the use of the URL action to dump variables. Boolean

ColdfusionLogging Enable/Disable Coldfusion Error Logs. Boolean

DefaultEvent: The name of the event handler for the default event to run: ehGeneral.dspHome String

RequestStartHandler: The name of the onRequestStart handler to run: ehGeneral.onRequestStart, leave
blank if not used.

String

RequestEndHandler: The name of the onRequestEnd handler to run: ehGeneral.onRequestEnd, leave blank
if not used

String

Page 1 of 4

ColdBox: A ColdFusion Framework by Luis Majano (cfcoldbox@gmail.com)

http://httpd.apache.org/docs/2.0/howto/htaccess.html
http://www.windowsecurity.com/articles/Installing_Securing_IIS_Servers_Part1.html

ApplicationStartHandler The name of the onApplicationStart handler to run: ehGeneral.onAppStart, leave
blank if not used. To trigger again this handler, you must reinitialize the framework:
fwreinit=1

String

OwnerEmail: The email that will be used to send all email communications. String

EnableBugReports: Enable/Disable the emailing of bug reports Boolean

UDFLibraryFile The location of your UDF library if in use, else leave blank. ColdBox will first look in
your includes directory, so you can just place the name of the UDF here, or the full
path you write including CFMX Mappings. Ex: /ColdBoxSamples/includes/udf.cfm

String

ExceptionHandler The custom exception handler to run on all framework exceptions. You decide what
to do.

String

CustomErrorTemplate ColdBox comes with its own error template. However, if you wish to customize your
errors, which you should, then just place the location of your custom error
template. For example: includes/errorpage.cfm or /mymapping/templates/error.cfm
Then in order to retrieve the error, you will need to get the Exception Bean from the
request collection: getValue("ExceptionBean"). You can then use this bean to render
your error page. Please look at the API to get a better understanding of the bean.

String

MessageboxStyleClass The CSS class name to be used with the messagebox plugin. If left blank, ColdBox
will use its internal CSS class.

String

HandlersIndexAutoReload This is a flag mostly used during development. ColdBox onApplication Start will
read your handlers directory and store the names of the available handlers. When
requests are made and handlers get instantiated, they are instantiated using the
internal syntax. Thus, if you are developing and are adding handlers, with this flag
set to TRUE, then ColdBox will reload the list. Else, you will have to manually reload
the structures using the fwreinit=1 url action

Boolean

ConfigAutoReload This is a flag mostly used during development. It will reload your config.xml settings
on every request. Else you will have to manually reload the structures using
fwreinit=1

Boolean

DebugMode example:
In order to enter/leave ColdBox debugmode, you will need to append some URL parameters
in order to do this. The url below will activate debugmode:

http://apppath/index.cfm?debugmode=true&debugpass=ColdBox

This url tells ColdBox to enable debugmode and use the debugpass variable to test against
the config.xml.cfm DebugPassword settting. If you do not want to assign a debug password,
you can leave the setting blank.
The url below will deactivate debugmode.

http://apppath/index.cfm?debugmode=false&debugpass=ColdBox.

<YourSettings>

 This section is used only if you want to specify your own settings for your application. Like
for example your datasource name, your own email address, etc. You can then retrieve them
using the getSetting() method. Example:

<YourSettings>
 <Setting name="myurl" value="http://myurl.com" />
 <Setting name="mysetting" value="myvalue" />
</YourSettings>

<MailServerSettings>

 This section is provided to bypass the Coldfusion Administrator's mail settings. For example:
for hosted environments where you do not have access to the ColdFusion Administrator. You
can then retrieve them using the getSetting() method

Page 2 of 4

ColdBox: A ColdFusion Framework by Luis Majano (cfcoldbox@gmail.com)

<MailServerSettings>
 <MailServer>mail.mymailserver.com</MailServer>
 <MailUsername>luismajano</MailUsername>
 <MailPassword>PASSWORD</MailPassword>
</MailServerSettings>

<BugTracerReports>

 ColdBox can send multiple users bug reports. You define all the email addresses that will
receive these mail reports. However, in order for the bug reports to be active, you need to set
the EnableBugReports setting to true. You can then retrieve them using the getSetting()
method

<BugTracerReports>
 <BugEmail>lmajano@gmail.com</BugEmail>
 <BugEmail>someone@mail.com</BugEmail>
</BugTracerReports>

<DevEnvironments>

 This section is used to keep track of your environment. You can list as many url's as you want,
ColdBox will try to match at least one. If it does then it will set the ENVIRONMENT variable
to DEVELOPMENT, else to PRODUCTION. You can then retrieve them using the getSetting()
method

<DevEnvironments>
 <url>dev</url>
 <url>lmajano</url>
</DevEnvironments>

<WebServices>

 You may use this section to list all your webservices that your application can use instead of
registering them in the Coldfusion Administrator. This becomes useful, since you can refresh
their stubs using the webservices API. Another nice feature, is that you can declare for every
webservice a development url and/or a production url. You can then retrieve them using the
getSetting() method

<WebServices>
 <WebService name="DistributionWS"
 URL="http://ColdBox.luismajano.com/ColdBox.cfc?wsdl"
 DevURL="http://dev.com/ColdBox.cfc?wsdl" />
 <WebService name="GoogleWS" URL="http://ws.google.com/ws?wsdl"/>
</WebServices>

<Layouts>

This is a very important setting for your ColdBox application. You will need to fill out a
mandatory setting which is the element. This element tells ColdBox to always use this Layout
unless specifically specified. You can then retrieve them using the getSetting() method

For example: Your application only uses one layout, then this section would look like this:

<Layouts>
 <DefaultLayout>Layout.Main.cfm</DefaultLayout>
<Layouts>

However, if your application has some views that need a different layout, then you need to
define them here. You can also change a view's layout programmatically by using the
SetLayout({layout_name}) method. So you define a Layout first, with a file and name
attribute. You will then proceed to create <View> elements with the name of the view. Do not
use the .cfm extension, ColdBox applies it automatically. You can then retrieve them using
the getSetting() method.

Page 3 of 4

ColdBox: A ColdFusion Framework by Luis Majano (cfcoldbox@gmail.com)

<Layouts>
 <DefaultLayout>Layout.Main.cfm</DefaultLayout>
 <Layout file="Layout.Login.cfm" name="login">
 <View>vwLogin</View>
 </Layout>
 <Layout file="Layout.Open.cfm" name="open">
 <View>vwLuis</View>
 <View>vwPopup</View>
 </Layout>
<Layouts>

<i18N>

This element is used to define a default resource bundle, a default java standard locale and the
storage for the locale in your ColdBox application. This will be used to activate ColdBox's
Internationalization features. ColdBox will read the defined resource bundle according to the
set locale, parse it and store it in an internal Application variable. Then from the event
handlers, layouts or views you can just use the getResource("Key") method to get keys from
the bundle structure. ex: getResource("cancelbutton")

For now, ColdBox can only use i18N via properties files. The database version is on the
works. The options for LocaleStorage are session or client. This is just the scope where
ColdBox will place the DefaultLocale variable in. You can manipulate this variable and
more through the i18n plugin. Please look at the API.

<i18N>
 <DefaultResourceBundle>includes/main</DefaultResourceBundle>
 <DefaultLocale>en_US</DefaultLocale>
 <LocaleStorage>session</LocaleStorage>
<i18N>

Page 4 of 4

ColdBox: A ColdFusion Framework by Luis Majano (cfcoldbox@gmail.com)

